HYDROTHERMAL SYNTHESIS OF AMMONIUM-BEIDELLETTE

Key Words—Ammonium-beidellite, Hydrothermal synthesis, X-ray powder diffraction.

Hydrothermally synthesized smectites like beidellite (Plee et al. 1987, Schutz et al. 1987, Kloprogge et al. 1990a, 1990b) and saponite (Suquet et al. 1977, Kloprogge et al. 1993a) are receiving increasing interest because of their high purity and their possible application as catalysts and molecular sieves. Highly acidic H+-smectites are usually prepared by heat or acid treatment of ammonium exchanged Na-smectites. An interesting new route would be the direct synthesis of ammonium-smectites. Recently, Kloprogge et al. (1993a) reported the hydrothermal preparation of ammonium-saponites from Si/Al/Mg gels and NH₄OH solutions, without the conventional cation exchange techniques.

Beidellite with only tetrahedral Al-Si substitution and its corresponding acidity is therefore an interesting candidate to be synthesized in the ammonium-form. This note briefly describes the first laboratory experiments to synthesize ammonium-beidellite using urea (H₂NCONH₂), glycine (H₂NCH₂CO₂H), ammonium-hydroxide (NH₄OH), ammonium-chloride (NH₄Cl), and ammonium-aluminum-fluoride ([NH₄]₃AIF₆) as ammonium sources. The [NH₄]₃AIF₆ was kindly supplied by P. J. Dirken, Dept. Geochemistry, Institute of Earth Sciences, State University of Utrecht, The Netherlands.

EXPERIMENTAL

Materials and methods

Si/Al gels containing 4.7 Al per 7.3 Si were prepared according to the method of Hamilton and Henderson (1968). The syntheses were achieved after 7 days at 1 kbar pressure and a temperature of 250º or 350ºC in a Tuttle-type, externally heated, cold seal pressure vessel, using gold capsules containing 50 mg gel and 50 µl of one of the ammonium source solutions. No ammonium buffers were used as (e.g., Voncken et al. 1987, 1988) for the synthesis of buddingtonite and tobelite, an ammonium feldspar and ammonium mica respectively. After cooling, the samples were analyzed by X-ray diffraction (XRD) and Infrared spectroscopy (IR). The final pH could not be determined due to the small amount of solution, which was completely adsorbed on the solid product.

Analytical techniques

The X-ray powder diffraction patterns were recorded on a Philips PW 1050/25 diffractometer using CuKα radiation. The scanning speed was 1º 2 T min. The IR spectra were obtained on powdered samples in KBr tablets (sample concentration 1 wt %) using a Perkin Elmer 580 IR spectrophotometer.

RESULTS AND DISCUSSION

Table 1 summarizes all experiments performed and the phases observed. At 250ºC most products are amorphous with only trace amounts of beidellite (E718-1) or kaolinite (E718-3). An exception is E725 containing the ammonium-aluminum-fluoride which resulted in the formation of trace amounts of ammonium-beidellite, ammonium-analcime, and NH₄AlF₄ (Figure 1a). The large amount of amorphous material is thought to be due to the low temperature, in agreement with other observations (Kloprogge et al. 1993b), that Na-beidellite, Na₅Al₄Si₃O₁₀(OH)₄·2H₂O, cannot be synthesized at 1 kbar at temperatures below 300ºC. Therefore, additional experiments have been conducted at 350ºC which is in the beidellite synthesis field (Kloprogge et al. 1993b). In all cases with alkaline solutions beidellite with a basal spacing between 10.5 and 10.8 Å is formed accompanied by ammonium-analcime (Figure 1c). This indicates the formation of ammonium-analcime first incorporating all free NH₄⁺ before the beidellite starts to crystallize. In nature analcime, Na₃Al₇Si₄O₁₆·H₂O, is mostly a secondary mineral formed during late stage magmatic processes from alkaline fluids accompanying minerals like prehnite and zeolites in foid containing rock types. Furthermore it is a typical component of tuff-bearing alkaline saline lakes, mainly related to the brine composition (Deer et al. 1992). Synthetic ammonium-analcime has been described by Barrer and Denny (1961). An exception is experiment E727-2 with an almost neutral pH, where only beidellite with a basal spacing of 12.4 Å is formed (Figure 1b). The presence of NH₄⁺ in the interlayer should result in a basal spacing near 12.4 Å (Suquet et al. 1977; Kloprogge et al. 1993a) comparable to K⁺. Saturation with ethylene glycol resulted in an expansion of the basal spacing to a value of approximately 17.0 Å. Therefore, only the beidellite from E727-2 containing glycine is thought to be a real ammonium-beidellite. Glycine can be considered to be a zwitterion forming a H₃N⁺CH₂COO⁻ in solution reacting to NH₄⁺ + HOCH₂COO⁻. Hydroxy-acetic acid lowers the pH slightly and is a well known ligand for metals like Si forming stable five-rings (personal comment, K. Timmer), e.g.
Clays and Clay Minerals

B B B A B c a B A

F B

9 F IB e e A a

I I [L L I I I

3 13 23 33 43 53 63 73

Figure 1. XRD patterns of a) E725: beidellite + NH₄-analcime + NH₄AlF₄; b) E727-2: ammonium beidellite and c) E726-1: beidellite + NH₄-analcime. B = beidellite, A = ammonium analcime, F = NH₄AlF₄.

2 OCH₂COO²⁻ + Si⁴⁺ →

\[O = C - O \]
\[O - C = O \]
\[\downarrow \]
\[\downarrow \]
\[H - C - O \]
\[O - C - H \]
\[\downarrow \]
\[\downarrow \]
\[H \]
\[H \]

The smaller basal spacings in the other experiments indicate the presence of H⁺ instead. The use of [NH₄]₃AlF₆ and glycine results in the highest crystalline beidellite. In the first case it can be explained by the partial replacement of the clay hydroxyl groups by F⁻ following the breakdown reaction of [NH₄]₃AlF₆: NH₄AlF₄ + 2F⁻ + 2NH₄⁺. In the second case the lowering of the pH from near neutral to slightly acidic is thought to prohibit the formation of analcime resulting in the incorporation of the ammonium in the beidellite.

The infrared spectra (Figure 2) are not very informative due to overlap of the absorption maxima of the various phases present in each run. The NH₄ absorption maxima can easily be distinguished as a broad peak between 33,240 and 3100 cm⁻¹, a shoulder at 3020 cm⁻¹, and a broad doublet at 1430 and 1400 cm⁻¹. These values agree well with those observed for ammonium-saponite but are systematically shifted towards lower wavenumbers compared to tobelite, an ammonium-mica (Voncken et al. 1987, Kloprogge et al. 1993a). The NH₄-beidellite sample E 727-2 shows a more distinct beidellite pattern in the range between 1100 and 400 cm⁻¹ with peaks at 1100, 1040, 938, 888, 810, 627, 537, and 480–465 cm⁻¹, which agree well with the IR data of synthetic beidellite published by Kloprogge et al. (1990a).

Table 1. Results and conditions of the experiments performed at 1 kbar.

<table>
<thead>
<tr>
<th>Sample</th>
<th>T (°C)</th>
<th>NH₄ source</th>
<th>pH (start)</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>E718-1</td>
<td>250</td>
<td>urea (1 M)</td>
<td>9.27</td>
<td>trace beidellite (10.4 Å)¹ + amorphous</td>
</tr>
<tr>
<td>E718-2</td>
<td>250</td>
<td>NH₄OH (25%)</td>
<td>14.12</td>
<td>amorphous</td>
</tr>
<tr>
<td>E718-3</td>
<td>250</td>
<td>NH₄Cl (1 M)</td>
<td>5.60</td>
<td>trace kaolinite + amorphous</td>
</tr>
<tr>
<td>E722-1</td>
<td>250</td>
<td>urea (2 M)</td>
<td>9.60</td>
<td>amorphous</td>
</tr>
<tr>
<td>E723</td>
<td>250</td>
<td>NH₄OH (6.5%)</td>
<td>12.57</td>
<td>amorphous</td>
</tr>
<tr>
<td>E725</td>
<td>250</td>
<td>[NH₄]₃AlF₆</td>
<td>—</td>
<td>traces beidellite (10.3 Å), NH₄-analcime, NH₄AlF₄ + amorphous</td>
</tr>
<tr>
<td>E726-1</td>
<td>350</td>
<td>[NH₄]₃AlF₆</td>
<td>—</td>
<td>beidellite (10.7 Å) + NH₄-analcime</td>
</tr>
<tr>
<td>E726-2</td>
<td>350</td>
<td>urea (1 M)</td>
<td>9.27</td>
<td>beidellite (10.5 Å) + NH₄-analcime</td>
</tr>
<tr>
<td>E726-3</td>
<td>350</td>
<td>NH₄OH (6.5%)</td>
<td>12.57</td>
<td>beidellite (10.8 Å) + NH₄-analcime</td>
</tr>
<tr>
<td>E727-2</td>
<td>350</td>
<td>glycine (2 M)</td>
<td>6.84</td>
<td>beidellite (12.4 Å)</td>
</tr>
</tbody>
</table>

¹ Numbers in parentheses represent the basal spacing observed by XRD.
² Only slightly soluble in water.
CONCLUSIONS

Hydrothermal treatment at 250°C does only succeed in the crystallization of H+-beidellite when using urea or \([\text{NH}_4]_3\text{AlF}_6\). Increasing the temperature to 350°C results first in the formation of ammonium-analcime followed by H+-beidellite. The high crystallinity of the beidellite in the \([\text{NH}_4]_3\text{AlF}_6\) experiments can be explained by the incorporation of fluor at hydroxyl sites. The formation of NH₄-beidellite in the glycine experiment is explained by the slightly acidic fluid prohibiting analcime formation.

TPD-TNO, Department of Inorganic Materials Chemistry
The Netherlands

J. T. Kloprogge

Department of R. Vogels
Inorganic Chemistry
Heterogeneous Catalysis
Utrecht University
P.O. Box 80083, 3508 TB Utrecht, The Netherlands

REFERENCES

(Received 7 June 1994; accepted 16 September 1994; Ms. 2514).